Store besparelser
Hurtig levering
Fri fragt over 499,-
Gemte
Log ind
0
Kurv
Kurv
Classifying Spaces of Degenerating Polarized Hodge Structures
Engelsk
Bogcover for Classifying Spaces of Degenerating Polarized Hodge Structures af Kazuya Kato, Sampei Usui, 9780691138220
Specifikationer
Sprog:
Engelsk
Sider:
352
ISBN-13:
9780691138220
Indbinding:
Paperback
ISBN-10:
0691138222
Udg. Dato:
7 dec 2008
Størrelse i cm:
16,0 x 23,4 x 2,8
Oplagsdato:
7 dec 2008
Forfatter(e):

Classifying Spaces of Degenerating Polarized Hodge Structures

Engelsk
Format:

Bog beskrivelse

In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure.


The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinement of the toroidal compactifications by Mumford et al. For general D, fine moduli spaces may have slits caused by Griffiths transversality at the boundary and be no longer locally compact. Second, Kato and Usui construct eight enlargements of D and describe their relations by a fundamental diagram, where four of these enlargements live in the Hodge theoretic area and the other four live in the algebra-group theoretic area. These two areas are connected by a continuous map given by the SL(2)-orbit theorem of Cattani-Kaplan-Schmid. This diagram is used for the construction in the first topic.

... Vis mere

Hos Booktok
948 kr
Udsolgt
Sikker betaling
23 - 25 hverdage

Specifikationer
Sprog:
Engelsk
Sider:
352
ISBN-13:
9780691138220
Indbinding:
Paperback
ISBN-10:
0691138222
Udg. Dato:
7 dec 2008
Størrelse i cm:
16,0 x 23,4 x 2,8
Oplagsdato:
7 dec 2008
Forfatter(e):
Finder produkter...
Kategori sammenhænge