This book provides a brief exposition of the principles of beam physics and particle accelerators with an emphasis on numerical examples employing readily available computer tools.
The new edition covers, as the first two editions, basic accelerator lenses and deflectors, lattice and beam functions, synchrotron radiation, beam envelope matching, betatron resonances with and without space charge, transverse and longitudinal emittance and space charge. Two new chapters cover special lattice configurations known as coupled optics, and small machines employed for physics research in scaled experiments, which cannot be easily tested in large accelerators. In addition, the general theory of accelerator magnets is presented in a new appendix. The key audiences for this book include physics and engineering graduates and senior undergraduate students, instructors in accelerator/beam physics and particle accelerator science and engineering professionals.
Key Features:
This book provides a brief exposition of the principles of beam physics and particle accelerators with an emphasis on numerical examples employing readily available computer tools.
The new edition covers, as the first two editions, basic accelerator lenses and deflectors, lattice and beam functions, synchrotron radiation, beam envelope matching, betatron resonances with and without space charge, transverse and longitudinal emittance and space charge. Two new chapters cover special lattice configurations known as coupled optics, and small machines employed for physics research in scaled experiments, which cannot be easily tested in large accelerators. In addition, the general theory of accelerator magnets is presented in a new appendix. The key audiences for this book include physics and engineering graduates and senior undergraduate students, instructors in accelerator/beam physics and particle accelerator science and engineering professionals.
Key Features: