Store besparelser
Hurtig levering
Gemte
Log ind
0
Kurv
Kurv

Deep Neural Networks and Data for Automated Driving

- Robustness, Uncertainty Quantification, and Insights Towards Safety
Engelsk Hardback

Deep Neural Networks and Data for Automated Driving

- Robustness, Uncertainty Quantification, and Insights Towards Safety
Engelsk Hardback
Tjek vores konkurrenters priser
Chapter 1. Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety.- Chapter 2. Does Redundancy in AI Perception Systems Help to Test for Super-Human Automated Driving Performance?.- Chapter 3. Analysis and Comparison of Datasets by Leveraging Data Distributions in Latent Spaces.- Chapter 4. Optimized Data Synthesis for DNN Training and Validation by Sensor Artifact Simulation.- Chapter 5. Improved DNN Robustness by Multi-Task Training With an Auxiliary Self-Supervised Task.- Chapter 6. Improving Transferability of Generated Universal Adversarial Perturbations for Image Classification and Segmentation.- Chapter 7. Invertible Neural Networks for Understanding Semantics of Invariances of CNN Representations.- Chapter 8. Confidence Calibration for Object Detection and Segmentation.- Chapter 9. Uncertainty Quantification for Object Detection: Output- and Gradient-based Approaches.- Chapter 10. Detecting and Learning the Unknown in Semantic Segmentation.- Chapter 11. Evaluating Mixture-of-Expert Architectures for Network Aggregation.- Chapter 12. Safety Assurance of Machine Learning for Perception Functions.- Chapter 13. A Variational Deep Synthesis Approach for Perception Validation.- Chapter 14. The Good and the Bad: Using Neuron Coverage as a DNN Validation Technique.- Chapter 15. Joint Optimization for DNN Model Compression and Corruption Robustness.
Tjek vores konkurrenters priser
Normalpris
kr 478
Fragt: 39 kr
6 - 8 hverdage
20 kr
Pakkegebyr
God 4 anmeldelser på
Tjek vores konkurrenters priser
Chapter 1. Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety.- Chapter 2. Does Redundancy in AI Perception Systems Help to Test for Super-Human Automated Driving Performance?.- Chapter 3. Analysis and Comparison of Datasets by Leveraging Data Distributions in Latent Spaces.- Chapter 4. Optimized Data Synthesis for DNN Training and Validation by Sensor Artifact Simulation.- Chapter 5. Improved DNN Robustness by Multi-Task Training With an Auxiliary Self-Supervised Task.- Chapter 6. Improving Transferability of Generated Universal Adversarial Perturbations for Image Classification and Segmentation.- Chapter 7. Invertible Neural Networks for Understanding Semantics of Invariances of CNN Representations.- Chapter 8. Confidence Calibration for Object Detection and Segmentation.- Chapter 9. Uncertainty Quantification for Object Detection: Output- and Gradient-based Approaches.- Chapter 10. Detecting and Learning the Unknown in Semantic Segmentation.- Chapter 11. Evaluating Mixture-of-Expert Architectures for Network Aggregation.- Chapter 12. Safety Assurance of Machine Learning for Perception Functions.- Chapter 13. A Variational Deep Synthesis Approach for Perception Validation.- Chapter 14. The Good and the Bad: Using Neuron Coverage as a DNN Validation Technique.- Chapter 15. Joint Optimization for DNN Model Compression and Corruption Robustness.
Produktdetaljer
Sprog: Engelsk
Sider: 427
ISBN-13: 9783031012327
Indbinding: Hardback
Udgave:
ISBN-10: 3031012321
Udg. Dato: 18 jun 2022
Længde: 0mm
Bredde: 155mm
Højde: 235mm
Forlag: Springer International Publishing AG
Oplagsdato: 18 jun 2022
Forfatter(e):
Forfatter(e)


Kategori Matematisk modellering


ISBN-13 9783031012327


Sprog Engelsk


Indbinding Hardback


Sider 427


Udgave


Længde 0mm


Bredde 155mm


Højde 235mm


Udg. Dato 18 jun 2022


Oplagsdato 18 jun 2022


Forlag Springer International Publishing AG

Vi anbefaler også
Kategori sammenhænge