Store besparelser
Hurtig levering
Gemte
Log ind
0
Kurv
Kurv

Differential Galois Theory and Non-Integrability of Hamiltonian Systems

Af: Juan J. Morales Ruiz Engelsk Paperback

Differential Galois Theory and Non-Integrability of Hamiltonian Systems

Af: Juan J. Morales Ruiz Engelsk Paperback
Tjek vores konkurrenters priser

This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several important applications are also included: homogeneous potentials, Bianchi IX cosmological model, three-body problem, Hénon-Heiles system, etc.

The book is based on the original joint research of the author with J.M. Peris, J.P. Ramis and C. Simó, but an effort was made to present these achievements in their logical order rather than their historical one. The necessary background on differential Galois theory and Hamiltonian systems is included, and several new problems and conjectures which open new lines of research are proposed.

- - -

The book is an excellent introduction to non-integrability methods in Hamiltonian mechanics and brings the reader to the forefront of research in the area. The inclusion of a large number of worked-out examples, many of wide applied interest, is commendable. There are many historical references, and an extensive bibliography.
(Mathematical Reviews)

For readers already prepared in the two prerequisite subjects [differential Galois theory and Hamiltonian dynamical systems], the author has provided a logically accessible account of a remarkable interaction between differential algebra and dynamics.
(Zentralblatt MATH)

Tjek vores konkurrenters priser
Normalpris
kr 478
Fragt: 39 kr
6 - 8 hverdage
20 kr
Pakkegebyr
God 4 anmeldelser på
Tjek vores konkurrenters priser

This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several important applications are also included: homogeneous potentials, Bianchi IX cosmological model, three-body problem, Hénon-Heiles system, etc.

The book is based on the original joint research of the author with J.M. Peris, J.P. Ramis and C. Simó, but an effort was made to present these achievements in their logical order rather than their historical one. The necessary background on differential Galois theory and Hamiltonian systems is included, and several new problems and conjectures which open new lines of research are proposed.

- - -

The book is an excellent introduction to non-integrability methods in Hamiltonian mechanics and brings the reader to the forefront of research in the area. The inclusion of a large number of worked-out examples, many of wide applied interest, is commendable. There are many historical references, and an extensive bibliography.
(Mathematical Reviews)

For readers already prepared in the two prerequisite subjects [differential Galois theory and Hamiltonian dynamical systems], the author has provided a logically accessible account of a remarkable interaction between differential algebra and dynamics.
(Zentralblatt MATH)

Produktdetaljer
Sprog: Engelsk
Sider: 167
ISBN-13: 9783034807203
Indbinding: Paperback
Udgave:
ISBN-10: 3034807201
Udg. Dato: 18 dec 2013
Længde: 0mm
Bredde: 155mm
Højde: 235mm
Forlag: Birkhauser Verlag AG
Oplagsdato: 18 dec 2013
Forfatter(e): Juan J. Morales Ruiz
Forfatter(e) Juan J. Morales Ruiz


Kategori Differentialregning & ligninger


ISBN-13 9783034807203


Sprog Engelsk


Indbinding Paperback


Sider 167


Udgave


Længde 0mm


Bredde 155mm


Højde 235mm


Udg. Dato 18 dec 2013


Oplagsdato 18 dec 2013


Forlag Birkhauser Verlag AG

Kategori sammenhænge