Store besparelser
Hurtig levering
Fri fragt over 499,-
Gemte
Log ind
0
Kurv
Kurv
Machine Learning for Factor Investing: R Version
Engelsk Paperback
Machine Learning for Factor Investing: R Version
Engelsk Paperback

720 kr
Tilføj til kurv
Sikker betaling
6 - 8 hverdage

Om denne bog

Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection. The technicality of the subject can make it hard for non-specialists to join the bandwagon, as the jargon and coding requirements may seem out of reach. Machine Learning for Factor Investing: R Version bridges this gap. It provides a comprehensive tour of modern ML-based investment strategies that rely on firm characteristics.

The book covers a wide array of subjects which range from economic rationales to rigorous portfolio back-testing and encompass both data processing and model interpretability. Common supervised learning algorithms such as tree models and neural networks are explained in the context of style investing and the reader can also dig into more complex techniques like autoencoder asset returns, Bayesian additive trees, and causal models.

All topics are illustrated with self-contained R code samples and snippets that are applied to a large public dataset that contains over 90 predictors. The material, along with the content of the book, is available online so that readers can reproduce and enhance the examples at their convenience. If you have even a basic knowledge of quantitative finance, this combination of theoretical concepts and practical illustrations will help you learn quickly and deepen your financial and technical expertise.

Product detaljer
Sprog:
Engelsk
Sider:
342
ISBN-13:
9780367545864
Indbinding:
Paperback
Udgave:
ISBN-10:
0367545861
Kategori:
Udg. Dato:
1 sep 2020
Længde:
22mm
Bredde:
254mm
Højde:
178mm
Forlag:
Taylor & Francis Ltd
Oplagsdato:
1 sep 2020
Ofte købt sammen
Minder om
Kategori sammenhænge