Køb for 499 kr mere for gratis levering til pakkeshop
499 kr
Pakkeshop
599 kr
Hjemmelevering
Gemte
Log ind
0
Kurv
Kurv
Feature Selection for High-Dimensional Data
Engelsk
Bogcover for Feature Selection for High-Dimensional Data af Veronica Bolon-Canedo, Amparo Alonso-Betanzos, Noelia Sanchez-Marono, 9783319366432
Specifikationer
Sprog:
Engelsk
Sider:
147
ISBN-13:
9783319366432
Indbinding:
Paperback
ISBN-10:
3319366432
Udg. Dato:
23 aug 2016
Størrelse i cm:
23,5 x 15,5
Oplagsdato:
23 aug 2016

Feature Selection for High-Dimensional Data

Engelsk
Paperback 2016
Format:

Bog beskrivelse
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
... Vis mere

Forlags Vejl. pris
524,24 kr
Januarudsalg
410 kr
spar 22%
Læg i kurv nu
Fri fragt over 499,-
Sikker betaling
23 - 25 hverdage

Specifikationer
Sprog:
Engelsk
Sider:
147
ISBN-13:
9783319366432
Indbinding:
Paperback
ISBN-10:
3319366432
Udg. Dato:
23 aug 2016
Størrelse i cm:
23,5 x 15,5
Oplagsdato:
23 aug 2016
Finder produkter...
Kategori sammenhænge